CHAPTER 7. WAVE MOTION

7-1 ONE-DIMENSIONAL WAVE

✓ A wave → Disturbance of medium
It travels with no change in its shape

Longitudinal wave : Displacement of medium ∥ Propagation direction
Transverse wave : Displacement of medium ⊥ Propagation direction

(a)

(b)

FIGURE 7-1

✓ A wave transports energy in space
But medium does not advance
→ Wave propagates at a great speed.

✓ Fig. 7-1(b)
Disturbance varies in time and space
\[\psi = f(x,t) \] : Wavefunction (7-1)

↑
Wave shape, propagation direction, velocity, and so on.
Hold time or hold position

\[\uparrow \]

Taking a picture \[\uparrow \]
Profile Oscillation in time

\[\psi \]

\[f(x) \text{ at } t = 0 \rightarrow f(x) \text{ at } t = t_i \]

\[\Delta x = v t_i \]

\[\begin{align*}
 f(x) \text{ translated by } \Delta x = v t_i & \rightarrow \bar{f}(x) \\
 \bar{f}(x) = f(x - v t_i)
\end{align*} \] (7-2)

A wave traveling in +x-direction

\[\psi = f(x - v t) \] (7-3)

A wave traveling in -x-direction

\[\psi = f(x + v t) \] (7-4)

✓ Wave motion is explained by differential wave equation

\[\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} : 1\text{-D} \] (7-5)

Velocity

The solution

\[\psi = f(x \pm v t), \text{ or } \psi = f(vt \pm x) = g(t \pm x / v) \] (7-6)

Arbitrary
Example 7-1
Sketch wavefunctions, $\psi_1 = f(x-ut)$ and $\psi_2 = f(vt-x)$, at time $t = t_1$ for $f(x)$ given as in Fig. 7-3.

Solution
Both wavefunctions are solutions of the same differential wave equation. If f were a cosine function, which is an even function, we could not distinguish between two waves, $\cos(x - ut)$ and $\cos(vt - x)$, by just looking at their profiles.

Example 7-2
Is ψ a traveling wave or not?
(a) $\psi = (ax - bt)^2$
(b) $\psi = \sin(ax^2 - bt^2)$
where a and b are constants.

Solution
(a) Derivatives of ψ
$$\frac{\partial^2 \psi}{\partial x^2} = 2a^2$$ and $$\frac{\partial^2 \psi}{\partial t^2} = 2b^2$$
Inserting them in Eq. (7-5)
\[
\frac{\partial^2 \psi}{\partial t^2} \frac{\partial^2 \psi}{\partial x^2} = b^2 / a^2
\]
\[= \nu^2\]
Since \(\nu = b / a \) is a constant, \(\psi \) is a traveling wave.

(b) Derivatives of \(\psi \)
\[
\frac{\partial^2 \psi}{\partial x^2} = 2a \cos((ax^2 - bt^2)) - (2ax)^2 \sin((ax^2 - bt^2))
\]
\[
\frac{\partial^2 \psi}{\partial t^2} = -2b \cos((ax^2 - bt^2)) - (4bt)^2 \sin((ax^2 - bt^2))
\]

Inserting them in Eq. (7-5)
\[
\frac{\partial^2 \psi}{\partial t^2} \frac{\partial^2 \psi}{\partial x^2} \neq \text{constant}
\]
Since the ratio, which corresponds to \(\nu^2 \), is not a constant, \(\psi \) is not a traveling wave.

7-1.1 Harmonic Wave

It has sine or cosine profile
\[
\psi = A \cos(k(x - vt)) = A \cos(\omega t)
\]
(7-7)

\(A \), amplitude
\(k \), propagation constant
\(\omega \), angular frequency, \(\omega = 2\pi f \)

Phase velocity
\[
\nu_p = \frac{\omega}{k}
\]
(7-8)

Harmonic wave is periodic \(\rightarrow \) Spatial period or wavelength, \(\lambda \)
Temporal period \(\tau \)

A harmonic wave
\(\rightarrow \) Sinusoidal steady-state
Crests represent a phase \(2\pi \), not \(2\pi m \)

Periodicity requires
\[
A \cos(k(x \pm \lambda) - \omega t) = A \cos(kx - \omega t)
\]
(7-9a)
\[
A \cos(kx - \omega (t \pm \tau)) = A \cos(kx - \omega t)
\]
(7-9b)
\(\rightarrow \)
\[
k\lambda = 2\pi, \ \omega \tau = 2\pi
\]
(7-10)

\[
k = \frac{2\pi}{\lambda}
\]
(7-11a)
\[
\omega = \frac{2\pi}{\tau} = 2\pi f
\]
(7-11b)
\(\rightarrow \) \(\nu = f \lambda \)
(7-12)
Harmonic wave at $t = t_1$.
The inset → Wave as a function of t

Reversed and delayed

(No leading edge under sinusoidal steady-state condition)

Example 7-3
Given a harmonic wave $\psi = -4 \cos 2\pi(0.2x - 3t)$, find
(a) amplitude
(b) direction of propagation
(c) wavelength
(d) temporal period
(e) frequency
(f) phase velocity

Solution
(a) 4
(b) $+x$-direction
(c) $k = \frac{2\pi}{\lambda} = 2\pi \times 0.2$
\[\lambda = 5[m]\]
(d) \(\omega = \frac{2\pi}{\tau} = 2\pi \times 3 \)
\(\tau = \frac{1}{3} \text{[sec]} \)

(e) \(\omega = 2\pi f = 2\pi \times 3 \)
\(f = 3 \text{[1/sec]} \)

(f) \(\nu_p = \frac{\omega}{k} = f\lambda = 15 \text{[m/s]} \)

Example 7-4

A wave generator at \(x = 0 \) produces a harmonic wave with phase velocity \(\nu_p \). Find the wavefunction in terms of cosine function.

Solution

Wavefunction in general form
\(\psi = A \cos (kx - \omega t + \delta) \)
where \(\delta \) is the initial phase

Consider a reference profile taken at \(t = t_1 \)
\(\psi_o = A \cos (kx - \omega t_1) \)
which has a crest at \(x = x_1 = (\omega / k)t_1 = \nu_p t_1 \).

\(\psi \) in Fig. 8-6 (a) is displaced to the left of \(\psi_o \) by \(\lambda / 4 \)
\(\psi = \psi_o (x + \lambda / 4, t_1) = A \cos \left[k(x + \lambda / 4) - \omega t_1\right] \)
\[= A \cos \left[kx - \omega t_1 + \pi / 2\right] \]
(7-13a)

\(\psi \) in Fig. 8-6 (b) is displaced to the right of \(\psi_o \) by \(\lambda / 4 \)
\(\psi = \psi_o (x - \lambda / 4, t_1) = A \cos \left[k(x - \lambda / 4) - \omega t_1\right] \)
\[= A \cos \left[kx - \omega t_1 - \pi / 2\right] \]
(7-13b)

The initial phase corresponds to the initial state of the wave being produced by the generator.
Time variation of ψ at $x = x_i$.

![Wave Motion](image)

FIGURE 7-7

Let us compare ψ in Fig. (7-7) with the reference wave $\psi_o = A \cos (kx_i - \omega t)$, which has a crest at $t = t_i = kx_i / \omega = x_i / v_p$.

ψ in Fig. 7-7 (a) is displaced to the right of ψ_o by $\tau / 4$

$$\psi = \psi_o (x_i, t - \tau / 4) = A \cos \left[kx_i - \omega \left(t - \tau / 4 \right) \right]$$

$$= A \cos \left[kx_i - \omega t + \pi / 2 \right]$$

(7-14a)

ψ in Fig. 7-7 (b) is displaced to the left of ψ_o by $\tau / 4$

$$\psi = \psi_o (x_i, t + \tau / 4) = A \cos \left[kx_i - \omega \left(t + \tau / 4 \right) \right]$$

$$= A \cos \left[kx_i - \omega t - \pi / 2 \right]$$

(7-14b)

Since x_i and t_i are arbitrary, and the harmonic wave extends from $-\infty$ to ∞, they are replaced by x and t. Then, Eq. (7-14) is the same as Eq. (7-13).

7-1.2 Complex Form of Harmonic Wave

Complex exponential \rightarrow Easy to combine harmonic waves

Easy to handle phase and impedance

![Euler formula](image)

(7-15)

Cosine and sine as

$$\cos \theta = \text{Re} \left[e^{i\theta} \right] = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$

: real part

(7-16a)

$$\sin \theta = \text{Im} \left[e^{i\theta} \right] = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$$

: imaginary part

(7-16b)
A harmonic wave in **real instantaneous form**

\[\psi = A \cos(kx - \omega t + \delta) = \text{Re}\left[Ae^{ikx-\omega t+i\delta} \right] \]

(7-17)

A harmonic wave in **complex form**

\[\psi(x, t) = Ae^{ikx-\omega t+i\delta} \]

(7-18)

Rewriting Eq. (7-18)

\[\psi(x, t) = (Ae^{i\delta})e^{ikx}e^{-i\omega t} = [\hat{A}e^{i\delta}]e^{-i\omega t} \]

(7-19)

↑

Scalar complex amplitude, \(\hat{A} \),

A scalar and a complex number

No change of \(\omega \) in linear media

A harmonic wave in time-independent complex form

\[\psi = \hat{A}e^{ikx} \]

(7-20)

The real instantaneous wavefunction is obtained by multiplying \(\psi \) with \(e^{-i\omega t} \) and then taking the real part.

Use of \(-i\) instead of \(i\)

\(-i\) is used more in engineering

To avoid any confusions, we express \(-i\) as \(-j\), where \(j = \sqrt{-1} \)

A harmonic wave in complex form

\[\psi(x, t) = \hat{A}e^{i\omega t-kx} \]

(7-21)

Ignoring \(e^{i\omega t} \), a harmonic wave in **phasor form**

\[\psi = \hat{A}e^{-j\omega t} \]

(7-22)

The real instantaneous wavefunction is obtained by multiplying the phasor with \(e^{i\omega t} \) and taking the real part.

Comparison of two expressions

\[\psi = \hat{A}e^{ikx} \quad \psi = \hat{A}e^{-j\omega x} \]

↑

Spatial distribution of phase. \quad Spatial motion of wave.

Time delays of wave. \quad Impedance

(Phase increases with increasing \(x \)) \quad (Positive phase means leading in time phase)

An expression should be used consistently in a given problems
Example 7-5
A harmonic wave \(\psi = A_0 e^{ikx} \) travels in free space. After it passes through a lossless medium of \(k' = nk \) in \(0 \leq x \leq d \), it is delayed by \(\lambda / 4 \), where \(\lambda \) is the wavelength in free space. Determine wavefunction
(a) \(\psi_1 \) in the medium
(b) \(\psi_2 \) after the medium.
(c) Find \(n \) in terms of \(d \) and \(\lambda \).

\[
\psi = A_0 e^{ikx}
\]

\[
k' = nk
\]

\[
\psi = \psi_1 = A_0 e^{ikx}
\]

\[
\psi_2 \text{ lags behind } \psi \text{ by } \lambda / 4 , \text{ or } \psi_2 \text{ is displaced to the left by } \lambda / 4
\]

\[
\psi_2 = A_0 e^{ik(x+d/4)}
\]

\[
\psi_1 (x = d) = \psi_2 (x = d)
\]

or

\[
A_0 e^{i(kd)} = A_0 e^{i(kd+\lambda/4)}
\] \((7-23) \)

We obtain from Eq. (7-23)

\[
d = \frac{d + \lambda}{4}
\]
Example 7-6
A harmonic wave $\psi = A_0 e^{-j k x}$ impinges on a material at $x = x_3$, and undergoes a reflection. The reflected wave ψ' propagates in $-x$-direction. Boundary condition requires that $\psi'(x_3) / \psi(x_3) = 0.5$ at $x = x_3$.
(a) Find the phasor of ψ'
(b) Find the total waves at $x = x_1$ and $x = x_2$
(c) What time phase does the total wave at $x = x_1$ lags behind that at $x = x_2$?

![Illustration of wave reflection](image)

FIGURE 7-9

(a) Incident wave at $x = x_3$
$\psi(x_3) = A_0 e^{-j k x_3}$

(7-24)

Reflected wave in general form
$\psi'(x) = A'_0 e^{j k x + \delta}$

(7-25)

Applying boundary condition at $x = x_3$,
$\psi'(x_3) = \frac{1}{2} \psi(x_3)$

or
$A'_0 e^{j k x_3 + \delta} = \frac{1}{2} A_0 e^{-j k x_3}$

(7-26)

Inserting $x_3 = 2.25 \lambda$ and $k = 2\pi / \lambda$ in Eq. (7-26)
$A'_0 e^{j 4.5\pi + \delta} = \frac{1}{2} A_0 e^{-j 4.5\pi}$

Ignoring multiples of 2π in the phase
$A'_0 = \frac{1}{2} A_0$ and $\delta = -\pi$

(7-27)

Wavefunction of the reflected wave
$\psi' = \frac{1}{2} A_0 e^{j k x - j \delta}$

(7-28)
(b) Total wave at \(x = x_1 = 0.3\lambda \)
\[
\psi_\tau(x_1) = \psi(x_1) + \psi'(x_1) = A_x e^{-j k x_1} + \frac{1}{2} A_y e^{j k x_1} = A_x e^{-j 0.6\pi} + \frac{1}{2} A_y e^{j 0.4\pi}
\]
or
\[
\psi_\tau(x_1) = 1.43 A_x e^{-j 1.68}\pi
\]
(7-29)

Total wave at \(x = x_2 = 1.25\lambda \)
\[
\psi_\tau(x_2) = \psi(x_2) + \psi'(x_2) = A_x e^{-j k x_2} + \frac{1}{2} A_y e^{j k x_2} = A_x e^{-j 2.5\pi} + \frac{1}{2} A_y e^{j 1.5\pi}
\]
or
\[
\psi_\tau(x_2) = 1.5 A_x e^{-j 0.5\pi}
\]
(7-30)

(c) Phase difference between Eqs. (7-29) and (7-30)
\[
\Delta \theta = \theta_1 - \theta_2 = -1.68 - (-0.5\pi) = -0.11 \ [\text{rad}]
\]

The total wave at \(x = x_1 \) lags behind the total wave at \(x = x_2 \) by 0.11 radian in time phase.
(A negative phase simply means a lag in time phase)

We have used \(e^{j k x} \) for a harmonic wave in Example 7-5 and \(e^{-j k x} \) in Example 7-6. However, any expression can solve both problems equally well. As may be seen from the examples, the use of \(e^{j k x} \) makes it easier to visualize propagation of the wave in space, and the use of \(e^{-j k x} \) is advantageous in specifying time delays of the wave at points in space.

7-2 THREE-DIMENSIONAL PLANE WAVE

Three-dimensional differential wave equation
\[
\nabla^2 \psi = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}
\]
(7-31)

Laplacian operator in Cartesian coordinates
\[
\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
\]
(7-32)

Solution of the wave equation
\[
\psi = A_x \cos \left((k_x x + k_y y + k_z z) \pm \omega t + \varphi \right) : \varphi \text{ is constant}
\]
(7-33)

In complex form
\[
\psi = A e^{j \mathbf{r} \cdot \mathbf{m} + j \omega t} \]
(7-34)

\[
\hat{A} = A_x \exp(j \varphi), \quad : \text{Scalar complex amplitude}
\]
\[
\mathbf{k} = k_x \mathbf{a}_x + k_y \mathbf{a}_y + k_z \mathbf{a}_z \quad : \text{Wavevector}
\]
(7-35a)
\[
|\mathbf{k}| = \sqrt{k_x^2 + k_y^2 + k_z^2} = \frac{2\pi}{\lambda} \quad : \lambda \text{ is the wavelength}
\]
(7-35b)
\[
\mathbf{r} = x \mathbf{a}_x + y \mathbf{a}_y + z \mathbf{a}_z \quad : \text{Position vector}
\]
(7-36)
\textbf{✓} \textbf{k} \cdot \textbf{r} \text{ determines spatial distribution of the phase}

Points of an equal phase \rightarrow \textbf{Phase front} or \textbf{wavefront}

A wave with plane wavefront \rightarrow Plane wave.

\[
\textbf{k} \cdot \textbf{r} = \alpha \quad \rightarrow \quad \text{Phase at } \textbf{r} \text{ is } \alpha
\]

\[k \cdot r = \alpha \quad \rightarrow \quad r_0 \text{ is one of } \textbf{r} \text{’s satisfying Eq. (7-37)} \quad (7-38)\]

Combining Eqs. (7-37) and (7-38)

\[
\textbf{k} \cdot (\textbf{r} - r_0) = 0
\]

\[A \text{ plane perpendicular to } \textbf{k} \text{ and including } r_0 \]

\[\text{FIGURE 7-10}\]

\textbf{✓} Wavefronts are periodic with a period λ

Change position by λ in \textbf{a}_k direction

\[
\hat{A}e^{\textbf{k} \cdot (\textbf{r} + \lambda \textbf{a}_k)} = \hat{A}e^{\textbf{k} \cdot \textbf{r}}e^{i\lambda} = \hat{A}e^{\textbf{k} \cdot \textbf{r}}
\]

\[k \lambda = 2\pi \quad (7-40)\]

\[k = \frac{2\pi}{\lambda} \quad : \text{wavenumber} \quad (7-41)\]
A plane wave \rightarrow Parallel wavefronts moving in \mathbf{a}_k-direction
(Not easy to draw on a paper)
A simple cosine

Each point \rightarrow A plane wavefront
Ordinate : magnitude
Abscissa : phase

k defines the propagation direction and period of the wavefront.

FIGURE 7-12
Example 7-7

An incident plane wave \mathbf{k}_i is partly transmitted across the interface at xy-plane, \mathbf{k}_t, while the rest is reflected, \mathbf{k}_r. The boundary condition requires that three waves should have the same spatial period along y-axis, and that the angles of reflection and transmission, θ_r and θ_i, should be equal. When $|\mathbf{k}| = 2\pi / \lambda$, determine the wavelength of the transmitted wave.

Solution

Spatial period of the incident wave along y-axis
$$\lambda / \sin \theta_i \quad (7\text{-}42)$$

Let λ_i be the wavelength of the transmitted wave.

Spatial period of the transmitted wave along y-axis
$$\lambda_i / \sin \theta_i \quad (7\text{-}43)$$

Equating Eqs. (7-42) and (7-43)
$$\lambda_i = \lambda \frac{\sin \theta_i}{\sin \theta_i}$$

The wavelength of the transmitted wave is smaller than that of the incident wave, if $\theta_i < \theta_r$.
7-3 ElectroMagnetic Plane Wave

Maxwell’s equations in free space, \(\rho = J = 0 \)

\[
\begin{align*}
\nabla \times \mathbf{E} &= -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \\
\nabla \times \mathbf{H} &= \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \\
\nabla \cdot \mathbf{E} &= 0 \\
\nabla \cdot \mathbf{H} &= 0
\end{align*}
\]

(7-42a) (7-42b) (7-42c) (7-42d)

Where

\(\mathbf{E} \) and \(\mathbf{H} \) are instantaneous electric and magnetic field intensities

\(\varepsilon_0 \) and \(\mu_0 \) are permittivity and permeability of free space

In Cartesian coordinates

\[
\begin{align*}
\mathbf{E}(r, t) &= E_x(r, t) \mathbf{a}_x + E_y(r, t) \mathbf{a}_y + E_z(r, t) \mathbf{a}_z \\
\mathbf{H}(r, t) &= H_x(r, t) \mathbf{a}_x + H_y(r, t) \mathbf{a}_y + H_z(r, t) \mathbf{a}_z
\end{align*}
\]

(7-43a) (7-43b)

\(\mathbf{r} \) is the position vector

\(E_x, a_x \) are a scalar component of \(\mathbf{E} \)

\(E_x, a_x \) are a vector component of \(\mathbf{E} \)

Taking the curl of Eq. (7-42a) and inserting Eq. (7-42b)

\[
\nabla \times \nabla \times \mathbf{E} = -\varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}
\]

(7-44)

Using a vector identity, \(\nabla \times \nabla \times \mathbf{A} = \nabla \nabla \mathbf{A} - \nabla^2 \mathbf{A} \), and inserting Eq. (7-42c)

\[
\nabla^2 \mathbf{E} = \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}
\]

: Three-dimensional vector differential wave equation

(7-45)

Three vector components of \(\mathbf{E} \) are mutually exclusive

\[
\begin{align*}
\nabla^2 E_x &= \varepsilon_0 \mu_0 \frac{\partial^2 E_x}{\partial t^2} \\
\nabla^2 E_y &= \varepsilon_0 \mu_0 \frac{\partial^2 E_y}{\partial t^2} \\
\nabla^2 E_z &= \varepsilon_0 \mu_0 \frac{\partial^2 E_z}{\partial t^2}
\end{align*}
\]

(7-46a) (7-46b) (7-46c)

Solutions are given by plane waves

\[
\begin{align*}
E_x(r, t) &= E_1 \cos(k \cdot r - \omega t + \phi_x) \\
E_y(r, t) &= E_2 \cos(k \cdot r - \omega t + \phi_y) \\
E_z(r, t) &= E_3 \cos(k \cdot r - \omega t + \phi_z)
\end{align*}
\]

A single solution

(7-47a) (7-47b) (7-47c)

The same \(k \) and \(\omega \)

Solution of the three-dimensional vector differential wave equation

\[
\mathbf{E}(r, t) = \text{Re}[E_0 e^{i(k \cdot r - \omega t)}]
\]

(7-48)
\(E_0 \) is the **vector complex amplitude**

\[
\uparrow
\]

A vector whose scalar components are complex quantities.

\[
E_0 = E_{0x} e^{i\phi_x} \mathbf{a}_x + E_{0y} e^{i\phi_y} \mathbf{a}_y + E_{0z} e^{i\phi_z} \mathbf{a}_z
\] \hspace{1cm} (7-49a)

\(\phi_x = \phi_y = \phi_z = \phi \), in many cases

\[
E_0 = E_0 e^{i\phi} \mathbf{a}_E
\] \hspace{1cm} (7-49b)

\(E_0 \), amplitude

\(\phi \), phase angle

\(\mathbf{a}_E \), unit vector

Phase velocity

\[
u_p = \frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \approx 3 \times 10^8 \text{ [m / s]} \] \hspace{1cm} (7-50)

which can be checked by by substituting Eq. (7-48) in Eq. (7-45)

\(\checkmark \) Differential wave equation for magnetic field intensity

\[
\nabla^2 \mathbf{\mathcal{H}} = \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{\mathcal{H}}}{\partial t^2}
\] \hspace{1cm} (7-51)

plane wave solution

\[
\mathbf{\mathcal{H}}(r, t) = \text{Re} \left[\mathbf{H} e^{i \mathbf{a} \cdot r - \omega t} \right]
\] \hspace{1cm} (7-52)

\(\mathbf{E} \) and \(\mathbf{H} \) are interrelated \(\rightarrow \) Solve either Eq.(7-45) or Eq. (7-51)

The other is obtained from Maxwell’s equations.

7-3.1 TRANSVERSE WAVE

\(\mathbf{E} \) generates \(\mathbf{H} \)

\(\uparrow \)

\(\mathbf{H} \) generates \(\mathbf{E} \)

\(\uparrow \)

Perpendicular to \(\mathbf{E} \)

Perpendicular to \(\mathbf{H} \)

\(\mathbf{E} \) and \(\mathbf{H} \) are interrelated, symmetric and perpendicular to each other

\(\rightarrow \) Propagation direction should be perpendicular to both \(\mathbf{E} \) and \(\mathbf{H} \)

A plane wave propagating along \(z \)-axis.

\(\rightarrow \) \(\mathbf{E} \) has no change along \(x \)- and \(y \)-axes

\[
\frac{\partial \mathbf{E}(r, t)}{\partial x} = \frac{\partial \mathbf{E}(r, t)}{\partial y} = 0
\] \hspace{1cm} (7-53)

or

\[
\mathbf{E}(r, t) = E_x(z, t) \mathbf{a}_x + E_y(z, t) \mathbf{a}_y + E_z(z, t) \mathbf{a}_z
\] \hspace{1cm} (7-54)
Inserting Eq. (7-54) in Eq. (7-42c)
\[\mathbf{v} \cdot \mathbf{\varepsilon} = \frac{\partial \mathcal{E}_x}{\partial x} + \frac{\partial \mathcal{E}_y}{\partial y} + \frac{\partial \mathcal{E}_z}{\partial z} \]
\[= \frac{\partial \mathcal{E}_x}{\partial z} = 0 \]
\[\mathcal{E}_x \text{ is constant, not a traveling wave} \]
Thus, \(\mathcal{E}_x = 0 \) (7-56)

Then, we have
\[\mathbf{\varepsilon} = \mathcal{E}_x(z,t) \mathbf{a}_x + \mathcal{E}_y(z,t) \mathbf{a}_y \]
Perpendicular to the propagation direction of \(\mathbf{\varepsilon} \)

Inserting Eq. (7-57) in Eq. (7-42a)
\[-\frac{\partial \mathcal{E}_x}{\partial z} \mathbf{a}_x + \frac{\partial \mathcal{E}_y}{\partial z} \mathbf{a}_y = -\mu_0 \frac{\partial \mathcal{H}_x}{\partial t} \mathbf{a}_x + \mu_0 \frac{\partial \mathcal{H}_y}{\partial t} \mathbf{a}_y - \mu_0 \frac{\partial \mathcal{H}_z}{\partial t} \mathbf{a}_z \]
\[\rightarrow \mathcal{H}_x = 0 \]
(7-59)

From Eqs. (7-56) and (7-59)
\[\rightarrow \text{The electromagnetic wave is a transverse wave.} \]

Example 7-8

Find magnetic field intensity of a plane wave that propagates in free space with an electric field intensity \(\mathbf{\varepsilon} = E_z \mathbf{a}_x \cos (kz - \omega t) \).

Solution

Inserting \(\mathbf{\varepsilon} \) in Eq. (7-42a)
\[\mathbf{a}_y E_z \frac{\partial}{\partial z} \cos (kz - \omega t) = -\mu_0 \frac{\partial}{\partial t} \left(\mathcal{H}_x \mathbf{a}_x + \mathcal{H}_y \mathbf{a}_y + \mathcal{H}_z \mathbf{a}_z \right) \]

It reduces to
\[kE_z \sin (kz - \omega t) = \mu_0 \frac{\partial \mathcal{H}_y}{\partial t} \]

Integrating both sides with respect to \(t \)
\[\mathcal{H}_y = \sqrt{\frac{\epsilon_0}{\mu_0}} E_z \cos (kz - \omega t) \]

Thus,
\[\mathcal{H} = \sqrt{\frac{\epsilon_0}{\mu_0}} E_z \mathbf{a}_y \cos (kz - \omega t) \]

\(\mathcal{H} \) has the same form as \(\mathbf{\varepsilon} \), except for \(\sqrt{\frac{\epsilon_0}{\mu_0}} \) and the direction of the field. Note that \(\mathbf{\varepsilon} \) and \(\mathcal{H} \) are in phase. Also note that \(\mathbf{\varepsilon} \) and \(\mathcal{H} \) are perpendicular to each other, and that \(\mathbf{\varepsilon} \times \mathcal{H} \) points to the propagation direction of the wave.
FIGURE 7-13