Chapter 4. The Properties of Light

4.1 Introduction
Scattering \rightarrow Transmission, reflection, and refraction
(microscopic) \rightarrow (macroscopic)

4.2 Rayleigh Scattering
• Scattering of sunlight
 Sunlight in the air \rightarrow Ground-state vibration of nitrogen, oxygen, etc.
 Higher freq. of light \rightarrow Larger amplitude of ground-state vibration.
 Stronger scattering.

The intensity of the scattered light $\sim \nu^4$
Blue scatters more strongly than red (Blue sky)

Rayleigh scattering $\overset{\text{def}}{=} \text{Scattering from particles } < \lambda/15$

A. Scattering and Interference
• Rare medium (separation $\geq \lambda$).
 \rightarrow Optical path difference to $P >> \lambda$.
 \rightarrow Intensities are added at P

• The dense medium (separation $\leq \lambda$).
 \rightarrow Electric fields are added at P.
 \rightarrow Less lateral scattering due to interference.
Forward Propagation
The same optical path length to P
\rightarrow Constructive interference in forward direction.

B. The Transmission of Light Through Dense Media
Little scatterings in the lateral or the backward directions

A fixed phase difference among wavelets in the lateral direction.
\rightarrow Sumed to zero

More dense, uniform and ordered medium
\rightarrow More complete lateral destructive interference
\rightarrow Forward propagation without diminish

Example
Glass, plastic : amorphous solids \rightarrow Lateral scattering
Quartz, mica : crystals \rightarrow Smaller lateral scattering
C. Transmission and the Index of Refraction

A primary wave in a dielectric.

→ Ground-state vibrations of atoms
→ Spherical wavelets
→ Interference of wavelets to form secondary wave.

The primary + The secondary wave ⇒ The transmitted wave

↑

Same speed of \(c \)

The phase velocity = \(c \), \(< c \), \(> c \).
Refraction index change.

- Primary wave → Electron oscillator → Secondary wave

\(0 \sim \pi \) phase shift
90° phase lag, natural result
Lorentz model (3.5)

For \(\omega \ll \omega_o \) : The secondary lags the primary by 90°
For \(\omega \approx \omega_o \), at resonance : 180° out of phase. Reduced refracted wave (absorption)
For \(\omega \gg \omega_o \) : 270° phase lag

\[Dashed: \text{ reduced damping} \]

- Accumulated phase lag or lead → Speed change of the wave.
4.3 Reflection

A beam of light in a dense medium → Scattering mostly in the forward direction
A beam of light across an interface → Some backward scattering. Reflection

The change of n over a distance $> \lambda$ → Little reflection
The change of n over a distance $< \lambda / 4$ → Abrupt interface

Internal and External Reflection

Unpaired atomic oscillators → Reflection
Indep. of glass thickness

Huygens’s Principle

Every point on a primary wavefront behaves as a point source of spherical secondary wavelet.
The secondary wavelets propagate with the same speed and frequency with the primary wave.
The wave at a later time is the superposition of these wavelets.

Rays

A ray is a line drawn in the direction of light propagation.
In most cases, ray is straight and perpendicular to the wavefront.
A plane wave is represented by a single ray.

A. The Law of Reflection

A plane wave into a flat medium ($\lambda >>$ atomic spacing)
→ Spherical wavelets from the atoms.
→ Constructive interference only in one direction.
Derivation of the law
At \(t=0 \), the wavefront is \(AB \)
At \(t=t_1 \), the wavefront is \(CD \)

Note
\[
\begin{align*}
v_i t_1 &= BD = AD \sin \theta_i, \\
v_r t_1 &= AC = AD \sin \theta_r \\
\frac{\sin \theta_i}{v_i} &= \frac{\sin \theta_r}{v_r}
\end{align*}
\]

Since \(v_i = v_r \)
\[
\theta_i = \theta_r
\]

: Law of reflection (Part I)

4.4 Refraction

The incident rays are bent at an interface

→ Refraction

A. The Law of Refraction
At \(t=0 \) the wavefront is \(AB \)
At \(t = \Delta t \) the wavefront is \(ED \)

\[
\begin{align*}
v_i \Delta t &= BD = AD \sin \theta_i \\
v_r \Delta t &= AC = AD \sin \theta_i \\
\frac{\sin \theta_i}{v_i} &= \frac{\sin \theta_r}{v_r}
\end{align*}
\]

Since \(v_i = \frac{c}{n_i}, \ v_r = \frac{c}{n_r} \)
\[
\begin{align*}
n_i \sin \theta_i &= n_r \sin \theta_r
\end{align*}
\]

: Law of refraction, Snell’s law

• A weak electric field
→ A linear response of the atom
→ A simple harmonic vibration of the atom
→ The frequencies of the incident, reflected and refracted waves are equal.

4.5 Fermat’s Principle

Hero proposed the principle of shortest path
\[
\theta_i = 0
\]

\(S, P \) and \(B \) are in the plane of incidence

Fermat proposed the principle of least time
→ Light takes the path that takes the least time
• **Reflection by Fermat’s principle**
 The time from S to P
 \[t = \frac{SO}{v_i} + \frac{DP}{v_i} = \sqrt{h^2 + x^2} \frac{v_i}{v_t} + \sqrt{b^2 + (a - x)^2} \frac{v_i}{v_t} \]
 \[\frac{\sin \theta_i}{v_i} = \frac{\sin \theta_t}{v_t} \quad \text{Snell’s law} \]
 \[\frac{dt}{dx} = 0 \]

• **Optical Path Length**
 The transit time from S to P
 \[t = \sum_{i=1}^{m} \frac{s_i}{v_i} = \frac{1}{c} \sum_{i=1}^{m} n_i s_i \]
 \[\text{Optical path length (OPL)} \]
 In an inhomogeneous medium
 \[OPL = \int_{S}^{P} n(s) ds \]

• **Modern Fermat’s Principle**
 The optical path length of the actual light path is stationary with respect to variations of the path
 \[\frac{df}{dx} = 0 \]
 Not allowed in the principle of least time
 Rays slightly deviate from the stationary path
 → The same OPL
 → Constructive interference

• **Stationary paths in an ellipsoidal mirror**

• **Fermat and Mirages**
 [Fig. 4.31-33] Bending of rays due to Fermat’s principle
4.6 The Electromagnetic Approach

A. Waves at an Interface

An incident plane wave

$$\vec{E}_i = \vec{E}_{oi} \cos (\vec{k}_i \cdot \vec{r} - \omega_i t)$$

The reflected and transmitted waves

$$\vec{E}_r = \vec{E}_{or} \cos (\vec{k}_r \cdot \vec{r} - \omega_r t + \varepsilon_r)$$
$$\vec{E}_t = \vec{E}_{ot} \cos (\vec{k}_t \cdot \vec{r} - \omega_t t + \varepsilon_t)$$

$\varepsilon_i, \varepsilon_r, \varepsilon_t$ are constant phases

The boundary conditions

$$\left(\vec{E}_{it}\right)_{\text{tangential}} + \left(\vec{E}_{rt}\right)_{\text{tangential}} = \left(\vec{E}_{ri}\right)_{\text{tangential}}$$

$$\uparrow \quad \uparrow \quad \uparrow$$
$$\vec{u}_n \times \vec{E}_i \quad \vec{u}_n \times \vec{E}_r \quad \vec{u}_n \times \vec{E}_t$$

This relation should be satisfied regardless of \vec{r} and t

$$\omega_i = \omega_r = \omega_t$$
$$\vec{k}_i \cdot \vec{r} = \vec{k}_r \cdot \vec{r} + \varepsilon_r = \vec{k}_t \cdot \vec{r} + \varepsilon_t$$

• From the first two of (1)

$$\left(\vec{k}_i - \vec{k}_r\right) \cdot \vec{r} = \varepsilon_r : \vec{r} \text{ is on the interface plane}$$

$$\left(\vec{k}_i - \vec{k}_r\right) \cdot (\vec{r} - \vec{r}_o) = 0 : \vec{r}_o \text{ is a point on the interface plane}$$

$$\left(\vec{k}_i - \vec{k}_r\right) / \vec{u}_n : \vec{u}_n \text{ is the surface normal}$$

$$\vec{k}_i, \vec{k}_r \text{ and } \vec{u}_n \text{ form a plane (Plane of incidence)}$$

$$|\vec{k}_i| \sin \theta_i = |\vec{k}_r| \sin \theta_r \quad \Rightarrow \quad \theta_i = \theta_r$$

$$|\vec{k}_i| = |\vec{k}_r|$$

From the first and last of (1)

$$\left(\vec{k}_i - \vec{k}_t\right) \cdot \vec{r} = \varepsilon_t$$

$$\left(\vec{k}_i - \vec{k}_t\right) \cdot (\vec{r} - \vec{r}_o) = 0$$

$$\left(\vec{k}_i - \vec{k}_t\right) \perp \text{The interface plane}$$

$$\vec{k}_i, \vec{k}_t \text{ and } \vec{u}_n \text{ form the plane of incidence}$$

$$|\vec{k}_i| \sin \theta_i = |\vec{k}_t| \sin \theta_t \quad \Rightarrow \quad n_i \sin \theta_i = n_t \sin \theta_t$$

$$\uparrow k = \frac{n \omega}{c}$$
B. The Fresnel Eqs.

Case 1. \(\vec{E} \perp \) The plane of incidence

The relation among \(\vec{E}, \vec{H}, \) and \(\vec{k} \)

\[
\left(\vec{E} \times \vec{H} \right) / / \vec{k}, \quad \left(\vec{k} \times \vec{E} \right) / / \vec{H}
\]

At the interface

\[
E_{oi} + E_{or} = E_{ot}
\]

\[
\left(\vec{H}_{oi} \right)_{\text{tangential}} + \left(\vec{H}_{or} \right)_{\text{tangential}} = \left(\vec{H}_{ot} \right)_{\text{tangential}}
\]

\[
-\vec{H}_{oi} \cos \theta_i \hat{x} + \vec{H}_{or} \cos \theta_r \hat{x} -\vec{H}_{ot} \cos \theta_t \hat{x}
\]

Since \(H = \vec{E} / \mu \nu \)

\[
\frac{1}{\mu_i \nu_i} (E_{oi} - E_{or}) \cos \theta_i = \frac{1}{\mu_o \nu_o} E_{ot} \cos \theta_t
\]

From (1) and (2) with \(\mu_i = \mu_r = \mu_t = \mu_o, \nu = c / n \)

Amplitude reflection coefficient

\[
\left\{ \frac{E_{or}}{E_{oi}} \right\}_i = -\frac{n_t \cos \theta_i - n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_i} = r_i
\]

Amplitude transmission coefficient

\[
\left\{ \frac{E_{ot}}{E_{oi}} \right\}_i = \frac{2n_t \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_i} = t_i
\]

The physical meaning of a phase shift in the reflected wave when \(n_t > n_i \).
Case 2.

The plane of incidence

\[\vec{E}_{\text{tangential}} \] should be continuous across the interface

\[
\begin{align*}
\vec{E}_{\text{tangential}}^{\text{in}} + \vec{E}_{\text{tangential}}^{\text{out}} &= \vec{E}_{\text{tangential}}^{\text{in}} + \vec{E}_{\text{tangential}}^{\text{out}} \\
E_{\text{in}} \cos \theta_i \hat{x}, & -E_{\text{out}} \cos \theta_r \hat{x}, & E_{\text{out}} \cos \theta_i \hat{x}, & : \vec{E} \text{ is such that } \vec{B} \text{ points outward}
\end{align*}
\]

\[(3) \]

\[\vec{H}_{\text{tangential}} \] should be continuous across the interface

\[
\begin{align*}
\vec{H}_{\text{tangential}}^{\text{in}} + \vec{H}_{\text{tangential}}^{\text{out}} &= \vec{H}_{\text{tangential}}^{\text{in}} + \vec{H}_{\text{tangential}}^{\text{out}} \\
\frac{1}{\mu_i \nu_i} \vec{E}_{\text{in}} \hat{z} + \frac{1}{\mu_r \nu_r} \vec{E}_{\text{out}} \hat{z} + \frac{1}{\mu_i \nu_i} \vec{E}_{\text{out}} \hat{z}
\end{align*}
\]

\[(4) \]

From (3) and (4) with \(\theta_i = \theta_r \), \(\nu_i = \nu_r \), \(\mu_i = \mu_r = \mu_\perp = \mu_\parallel \), \(\nu = c / n \)

Amplitude reflection coefficient

\[
\begin{align*}
\frac{E_{\text{in}}}{E_{\text{in}}} &= n_i \cos \theta_i - n_i \cos \theta_r \\
&= \frac{n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_r} = r_i
\end{align*}
\]

Amplitude transmission coefficient

\[
\begin{align*}
\frac{E_{\text{in}}}{E_{\text{in}}} &= \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_r} = t_i
\end{align*}
\]

• Applying Snell’s law assuming \(\theta_i \neq 0 \), Fresnel Eqs. become

\[
\begin{align*}
r_i &= \frac{\sin (\theta_i - \theta_r)}{\sin (\theta_i + \theta_r)} \\
t_i &= \frac{2 \sin \theta_i \cos \theta_i}{\sin (\theta_i + \theta_r)} \\
t_i &= \frac{\tan (\theta_i - \theta_r)}{\tan (\theta_i + \theta_r)} \\
t_i &= \frac{2 \sin \theta_i \cos \theta_i}{\sin (\theta_i + \theta_r) \cos (\theta_i - \theta_r)}
\end{align*}
\]
C. Interpretation of the Fresnel Eqs.

Amplitude Coefficients

At normal incidence, $\theta_i = 0$

$$|r| = |t| = \frac{n_t - n_i}{n_t + n_i}$$

- The external reflection ($n_i > n_t, \ \theta_i > \theta_t$)

 $r_\perp < 0$, $r_\| = 0$ when $(\theta_i + \theta_t) = 90^\circ$: *Brewster angle, Polarization angle* of $\theta_i = \theta_p$.

- The internal reflection ($n_i > n_t, \ \theta_i > \theta_t$)

 $r_\perp = 1$ when $\theta_i = 90^\circ$, $r_\| = 0$ when $(\theta_i + \theta_t) = 90^\circ$: *Critical angle* of $\theta_i = 0$ in $n_i \sin \theta_i = n_t$.

\[n_i > n_t, \ n_t = 1.5 \]

Stronger reflection at glancing angle

\[n_i > n_t, \ n_i = 1.5 \]

Reflectance and Transmittance

The power per unit area : $S = \mathbf{E} \times \mathbf{H}$, **poynting vector**

In phasor form : $\tilde{S} = \frac{1}{2} \left(\mathbf{E} \times \mathbf{H}^* \right)$

The **intensity** (W/m^2) : **Irradiance**

$$I = \langle S \rangle = \frac{1}{2} \frac{c}{n} \varepsilon_0 \varepsilon_r E_0^2$$

: Average energy per unit time per unit area
The cross sectional area of the incident beam \(A_i \cos \theta_i \) equals the area of the reflected beam \(A_r \cos \theta_r \) and the transmitted beam \(A_t \cos \theta_t \).

The **reflectance**

\[
R = \frac{\text{Reflected power}}{\text{Incident power}} = \frac{I_r A \cos \theta_r}{I_i A \cos \theta_i} \Rightarrow \frac{I_r}{I_i} = \left| \frac{E_{oi}}{E_{oi}} \right|^2 = r^2
\]

The **transmittance**

\[
T = \frac{\text{Transmitted power}}{\text{Incident power}} = \frac{I_t A \cos \theta_t}{I_i A \cos \theta_i} \Rightarrow \frac{E_{ot}}{E_{oi}} = \left(\frac{n_i \cos \theta_i}{n_t \cos \theta_t} \right)
\]

- **Energy conservation**

\[
I_i A \cos \theta_i = I_r A \cos \theta_r + I_t A \cos \theta_t
\]

\[
\rightarrow n_i E_{oi}^2 \cos \theta_i = n_r E_{or}^2 \cos \theta_r + n_t E_{ot}^2 \cos \theta_t
\]

\[
\rightarrow 1 = \left(\frac{E_{or}}{E_{oi}} \right)^2 + \left(\frac{n_i \cos \theta_i}{n_t \cos \theta_t} \right) \left(\frac{E_{ot}}{E_{oi}} \right)^2
\]

\[
\uparrow R \quad \uparrow T
\]
4.7 Total Internal reflection

The Snell’s law for $n_i > n_t$

$$\sin \theta_i = \frac{n_t}{n_i} \sin \theta_t \quad : \theta_i < \theta_t$$

At the critical angle, $\theta_t = 90^\circ$

$$\sin \theta_c = \frac{n_t}{n_i}$$

For $\theta_i > \theta_c$

\rightarrow All the incoming energy is reflected back into the incident medium

Total Internal Reflection

Internal reflection and TIR:
Transition from (a) to (e) without discontinuity.
(Reflection increases while transmission decreases)

TIR in prisms
The critical angle at air-glass interface : 42°

TIR in terms of scattering

A surface wave when $\theta_c = 90^\circ$
A. The Evanescent Wave

Using Snell’s law we rewrite Fresnel Eq. as

\[
 r_\perp = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t} \Rightarrow \sqrt{\left(\frac{n_i}{n_t}\right)^2 - \sin^2 \theta_i - \cos \theta_i} \sqrt{\left(\frac{n_i}{n_t}\right)^2 - \sin^2 \theta_i + \cos \theta_i}
\]

\[
 r_\parallel = \frac{-n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t} \Rightarrow \sqrt{\left(\frac{n_i}{n_t}\right)^2 - \sin^2 \theta_i - (n_i/n_t)^2 \cos \theta_i} \sqrt{\left(\frac{n_i}{n_t}\right)^2 - \sin^2 \theta_i + (n_i/n_t)^2 \cos \theta_i}
\]

\[r_\perp, \ r_\parallel\] become complex when \(\theta_i > \theta_c \)

\[\rightarrow \quad r_\perp r_\perp^* = r_\parallel r_\parallel^* = R = 1\]

- The transmitted wave: \(\vec{E}_t = E_{\text{om}} e^{i(k_z x + k_y y)} \) where \(\vec{k}_t = k_{tx} \hat{x} + k_{ty} \hat{y} \)

\[k_{tx} = k_i \sin \theta_i \Rightarrow \frac{n_i}{n_t} \sin \theta_i \]

\[k_{ty} = k_i \cos \theta_i \Rightarrow \pm k_i \sqrt{1 - \left(\frac{n_i}{n_t}\right)^2} \sin \theta_i \Rightarrow \pm i \left[k_t \sqrt{\left(\frac{n_i}{n_t}\right)^2} \sin \theta_i - 1 \right] \]

\[\uparrow \quad \uparrow \quad \uparrow = \beta \quad \quad \theta_i > \theta_c \]

The transmitted wave: \(\vec{E}_t = \vec{E}_{\text{om}} e^{i\beta_x x + i\beta_y y} \), Evanescent wave

\[\rightarrow \quad \text{It advances in x-direction but exponential decay along y-axis} \]

\[\rightarrow \quad \text{Constant phase (yz-plane)} \quad \perp \quad \text{Constant amplitude (xz-plane), Inhomogeneous wave} \]

\[\text{No net energy flow across the interface.}\]

- **Frustrated Total Internal Reflection (FTIR)**

 Dense medium \(\rightarrow \) Rare medium \(\rightarrow \) Dense medium (Energy transfer)

 \[\uparrow \quad \uparrow \quad \uparrow \quad \text{TIR} \quad \text{Evanescent wave}\]

[Fig. 4.55] FTIR
[Fig. 4.56] Beamsplitter using FTIR

Low-index space controls the transmittance
4.8 Optical Properties of Metals

Free electrons in metals $\mathbf{\rightarrow} \quad \mathbf{J} = \sigma \mathbf{E}$

\uparrow Unbound $\uparrow \uparrow$ Conductivity $\uparrow \uparrow$ Current density

A perfect conductor: $\sigma = \infty$
\rightarrow Electrons follow the electric field exactly
(No restoring force, no natural freq., no absorption, only reemission)

In real metals: $\sigma \neq \infty$
Collision of electrons with lattice or imperfections
\rightarrow Energy loss by heat

Waves in a metal
The Maxwell’s eqs. in metals

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{H} = \epsilon \frac{\partial \mathbf{E}}{\partial t} + \sigma \mathbf{E}$$

$$\frac{\partial^2 \mathbf{E}}{\partial x^2} + \frac{\partial^2 \mathbf{E}}{\partial y^2} + \frac{\partial^2 \mathbf{E}}{\partial z^2} = \mu \epsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} + \mu \sigma \frac{\partial \mathbf{E}}{\partial t} \Rightarrow -\omega^2 \mu \epsilon \sigma \mathbf{E} - \omega \mu \epsilon \sigma \mathbf{E} \Rightarrow -\omega^2 \mu \epsilon \sigma \mathbf{E} \left(n^2 + i \frac{\sigma}{\omega \epsilon} \right) \mathbf{E}$$

\uparrow Damping \uparrow

$$= n_e^2 \left(n_R + i n_l \right)^2$$

The plane wave solution

$$\mathbf{E} = \mathbf{E}_0 e^{i \mathbf{k} \cdot \mathbf{r} - i \omega t} \Rightarrow \mathbf{E}_0 e^{-\frac{\mu \epsilon n_y + \mu \sigma n_y}{c} - i \omega t}$$

\uparrow

$$\mathbf{k} = \omega \sqrt{\mu \epsilon} \mathbf{n}_c \mathbf{\hat{y}}$$

The irradiance

$$I(y) = I(0) e^{-\alpha y}, \quad \alpha = \frac{\omega}{c} n_l = 2 \sqrt{\pi f \mu \sigma} : \text{attenuation coefficient}$$

For $y = \frac{1}{\alpha}$ the irradiance drops by a factor of e^{-1}: skin depth, δ

Example Skin depth of Copper
For UV ($\lambda_o \approx 100$nm) $\delta = 0.6$nm
For IR ($\lambda_o \approx 10,000$nm) $\delta = 6$nm

Little penetration \rightarrow High reflection of light

Metals reflect almost all the incident light (85%~95%) regardless of wavelengths \rightarrow Colorless (Silvery gray)
The Dispersion Equation

Vibration of a bound electron due to the electric field

\[x(t) = \frac{q/m}{\omega_0^2 - \omega^2 - i\gamma\omega} E(t) \quad : \quad q > 0 \text{, } x \text{ measures from - to +} \]

No restoring force in metals: \(\omega_o = 0 \)

\[x(t) \text{ is always } 180^\circ \text{ out of phase with } E(t) \]

\[\text{The reradiated wave cancels the incoming wave} \]

- The Dispersion Relation

Neglect bound charges and neglect \(\gamma \) assuming high frequency

\[n^2(\omega) \approx 1 - \frac{Nq^2}{\varepsilon_o n_0} = 1 - \left(\frac{\omega_p}{\omega} \right)^2 \quad : \quad \omega_p = \text{plasma frequency} \]

For \(\omega < \omega_p \), \(n \) becomes complex. Exponential decay of the wave

for \(\omega > \omega_p \), \(n \) becomes real. Small absorption. The conductor becomes transparent

Ionosphere: Distribution of free electrons

\(n < 1 \) and real for \(\omega > \omega_p \)

Reflection from a metal

At normal incidence on a metal

\[R = \left(\frac{n_c - 1}{n_c + 1} \right) \left(\frac{n_c - 1}{n_c + 1} \right)^* \Rightarrow \left(\frac{n_R - 1}{n_R + 1} \right)^2 + n_I^2 \left(\frac{n_R + 1}{n_R - 1} \right)^2 \quad : \quad n_c = n_R + i n_I \]

If \(n_I = 0 \) \quad \rightarrow \quad \text{Dielectric material}

If \(n_I > 0 \) \quad \rightarrow \quad R \text{ becomes larger}

If \(n_I >> n_R \rightarrow \quad n_c \text{ purely imaginary, } R = 1 \)

Reflectance from an absorbing medium

\(n_I \) and \(R \) depend on \(\omega \)

Visor of space suit

Thin gold coating \quad \rightarrow \quad 70\% \text{ reflection}

(Reduction of IR transmission still transmitting VIS)
4.9 The Interaction of Light and Matter

Reflection of all visible frequency \rightarrow White color
70%~80% reflection \rightarrow Shiny gray of metal

Thomas Young: Colors can be generated by mixing three beams of light well separated in frequency

Three primary colors combine to produce white light: No unique set

The common primary colors: R, G, B

- Two complementary colors combine to produce white color

 $M + G = W,$
 $C + R = W,$
 $Y + B = W$

- A saturated color contains no white light (deep and intense)
 An example of an unsaturated color

 $M + Y = (R + B) + (R + G) = W + R$: Pink

- The characteristic color comes from selective absorption

Example:
1. Yellow stained glass
 White light \rightarrow Resonance in blue \rightarrow Yellow is seen at the opposite side
 \uparrow \uparrow Red + Green
 Strong absorption in blue

2. H_2O has resonance in IR and red
 \rightarrow No red at ~30m underwater

3. Blue ink looks blue in either reflection or transmission
 Dried blue ink on a glass slide looks red.
 \rightarrow Very strong absorption of red.
 Strong absorber is a strong reflector due to large n_1.

Resonance of materials
Most atoms and molecules \rightarrow Resonances in UV and IR
Pigment molecules. \rightarrow Resonances in VIS
Organic dye molecules \rightarrow Resonance in VIS

- Subtractive coloration
 Blue light \rightarrow Yellow filter \rightarrow Black at the other side
 \uparrow
 It removes blue